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LEWER TO THE EDITOR 

r-adic one-dimensional maps and the Euler summation formula 
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Triomphe, B-I050 Brussels, Belgium 
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Abstract. For the r-adic one-dimensional maps, we explicitly construct the decaying eigen- 
States and adjoint eigenstates associated with the Ruelle resonances. We show that the 
eigenfunctions of the corresponding Frobenius-Perron operator are the well known 
Bernoulli polynomials. The adjoint eigendistributians are obtained as derivatives of the 
Dirac distributions at the end points of the unit interval. The resulting expansion of the 
initial density in terms ofthe decaying eigenstates is given by the Euler summation formula. 

Several recent works have been devoted to Ruelle's resonances [ I ]  in chaotic dynamical 
systems [l-111. The Ruelle resonances are the poles of the spectral functions which 
are the Fourier transforms of the time correlation functions [Z-41. These resonances 
are calculated by solving the eigenvalue problem of the Frobenius-Perron operator 
corresponding to the dynamical system [12]. The resonances are obtained as the zeros 
of the Fredholm determinant of the evolution operator which, in turn, can be written 
as a product over the unstable periodic orbits of the chaotic system [4-71. This method 
has been shown to be very powerful to obtain the relaxation or the decay rates of 
several chaotic systems such as one-dimensional maps, the disk scatterers, and others 
[4-81. 

However, the nature of the eigenstates which are associated with these Ruelle 
resonances remains elusive [ l ,  9-11]. In this letter, we construd these eigenstates for 
a family of exactly solvable systems which are the r-adic one-dimensional maps [I31 

& + I  = d x , )  with p(x)=rx  (modulo 1) (1) 
where r is an integer greater than or equal to 2. We associate two operators-with the 
dynamical system (1). One one hand, we have the Koopman operator (Ug)(x)- 
g(p(x)) acting on functions g(x) defined in the unit interval [IZ]. On the other hand, 
we have the Frobenius-Perron operator [12] 

which is related to the Koopman operator in the well known manner [12]. 
We asume that the Frobenius-Perron operator acts on the complete countably 

normed (FrCchet) space [15] 8 ( ~ )  of analytic entire functions f of exponential type 
T, i.e. VE>O, 3A.(f)>O: 

I f ( z ) l ~ A .  e x ~ [ ( ~ + ~ ) l ~ l l  Vz = x + i y  E C (3) 
where the topology is given by the countable family of norms [ 161 
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We observe [l]  that the entire functions {cos 2dx,  sin 2?rlx} with I C  2N+ 1 are 
mapped onto the zero fu?ction by P so that they are eigenfunctions associated with 
the eigenvalue x=O of P. In order to remove this null space of fi, we shall fix the 
parameter T at a value less than 27~. 

A basis of 8(~) is given by the monomials {x*},,, in which the Frobenius-Perron 
operator becomes an infinite triangular matrix with the diagonal elements 

..-n (<) , . -",! ,2  ,.... \-'I 
1 

x. =- r n  

Therefore, the Fredholm determinant of fi is given by 

1 m 

O=det(l-x-lfi)= n (1--). 
-=U xrn 

Whereupon, we obtain the Ruelle resonances, i.e. the eigenvalues of 
( 5 )  of the characteristic determinant (6). 

( 5 )  are the Bernoulli polynomials B.(x) in the sense that 

as the roots 

The eigenfunctions of the Frobenius-Perron operator associated with the resonances 

(7) 
1 

(fi&)(x) =7 Mx). 

This fact can easily be proved by applying fi on the generating function of the Bernoulli 
polynomials given in [17] (see also [18,19]). 

The dynamical problem is the following. We are interested in the time evolution 
of an ensemble of particles starting from the initial density f ( x ) .  According to the 
Euler summation formula (23.1.32 in [17]), we have 

f (x )  = ( I f ( y )  dy+  f [f'""(l) -f'""(O)lBn(x) (8) 
0 n. 

where f'*' denotes the kth derivative off :  From the properties of the Bernoulli 
polynomials [17], the right-hand member of (8) is convergent i f f  belongs to 8 ( ~ )  
with T < 2~ which confirms the critical value for T. Methods to overcome this restriction 
have been discussed in [ZO]. For numerical applications, it is known that excellent 
results can be obtained by truncating the divergent series (8) while keeping the rest. 
In this respect, the spectral decomposition (8) differs from standard L2 spectral 
decompositions [14]. 

Equation (8) implies that the eigendistributions associated with the eigenfunctions 
(7) are 

D ~ ( x ) =  e ( x p ( 1 - x )  (9) 

where O(x) is the Heaviside step function while S'*'(x) denotes the kth derivative of 
the Dirac distribution. 

The time e v o ! ~ t i ~ n  ~ f t h e  &&ty can no! be written in terms of Ruelle's resonances 
( 5 )  and its associated decaying eigenstates 

m 

f,(x)=(fiIfo)(x)= ~ i (D&f, )&(x)  (11) 
"-0  
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where (DJo) denotes the evaluation of the eigendistributions (9). (10) for the initial 
density&. Like the Euler summation formula (S), the expansion (11) is convergent in 
% ( T )  with T < 27r but also for larger values of T as t increases. Otherwise, it is divergent 
and requires a truncation before any numerical calculation. Similar results have been 
obtained in a work by Professor G Roepstorff [19], which came to our knowledge at 
the end of the present work. Let us also mention here that a different but related 
convergent expansion of f i  has been obtained (see e.g. 1211). 

It is well known that the transient density relaxes towards the stationary density 
which is uniform for the r-adic map [ 12,221. The interesting feature of the result ( I  1) 
is that the relaxation process is expressed explicitly in terms of its eigenmodes. 
Expansions like (11) contain more information for numerical calculations than pro- 
vided with the standard L2 spectral theory in the case of systems with a continuous 
spectrum on the unit circle. We believe that the methods we developed here can be 
extended to more general hyperbolic maps of the interval. 

I thank Professor G Nicolis for support in this research. I am grateful to Professors 
E Lami Dozo and G Roepstorff as well as to H Hasegawa for fruitfd discussions. I 
also thank the referee for his suggestions. The author is 'Chercheur Qualifi6' at the 
National Fund for Scientific Research (Belgium). 
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